Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chuan-Ming Jin* and Chu-Ru Gong

Department of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China

Correspondence e-mail:
jincm1999@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.068$
$w R$ factor $=0.169$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(2-methylimidazol-1-yl)methane

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4}$, the asymmetric unit contains one half-molecule. The C atom of the bridging methylene group lies on a twofold rotation axis. The dihedral angle between the symmetry-related imidazole rings is $88.1(2)^{\circ}$.

Comment

Polyazolylmethanes have attracted considerable attention in the fields of biochemistry (Sorrell \& Borovik, 1987), materials chemistry (Muller et al., 2001), heterocyclic chemistry (Juliá et al., 1982) and coordination chemistry (Effendy et al., 2003). Although many structures of their metal complexes have been reported, there are only a few reports on the structures of the ligands themselves.

(I)

The title compound, (I) (Fig. 1), was prepared by using the phase-transfer organic synthesis method (Juliá et al., 1984). The asymmetric unit consists of one half-molecule. The C atom of the bridging methylene group lies on a twofold rotation axis.

The back donation of the lone pair of electrons of atom N1 may affect the $\mathrm{C}-\mathrm{N}$ bond lengths and $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angles. The dihedral angle between the symmetry-related imidazole rings is 88.1 (2) ${ }^{\circ}$.

Experimental

The title molecule was synthesized by modifying the literature method of Diez-Barra et al. (1993) and was identified by ${ }^{1} \mathrm{H}$ NMR $\left[300 \mathrm{MHz}, \mathrm{CDCl}_{3}: \delta 6.87(2 \mathrm{H}, s), 6.77(2 \mathrm{H}, s), 5.77(2 \mathrm{H}, s), 2.37(6 \mathrm{H}\right.$, $s)]$ and ${ }^{13} \mathrm{C}$ NMR ($\delta 144.8,128.9,119.1,55.7,13.7$). It was crystallized from a chloroform-methanol (5:1) mixture by slow evaporation (yield: $50 \mathrm{mg}, 72 \%$, m.p. 447-449 K).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4} \\
& M_{r}=176.23 \\
& \text { Monoclinic, } C 2 / c \\
& a=12.371(2) \AA \\
& b=8.6873(16) \AA \\
& c=9.9175(18) \AA \\
& \beta=120.599(3){ }^{\circ} \\
& V=917.4(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

Received 4 April 2005 Accepted 20 April 2005 Online 27 April 2005

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.976, T_{\text {max }}=0.982$
2281 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.169$
$S=1.08$
826 reflections
61 parameters
H -atom parameters constrained

826 independent reflections 668 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.3^{\circ}$
$h=-12 \rightarrow 14$
$k=-10 \rightarrow 8$
$l=-11 \rightarrow 11$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0801 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.022(6)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 3$	$1.362(2)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.309(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.374(3)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.368(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.445(2)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.483(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.341(3)$		
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$107.29(15)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$111.0(2)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	$127.18(14)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 1$	$110.62(16)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$125.46(14)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 5$	$125.28(17)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$105.35(17)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 5$	$124.09(18)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$105.69(15)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 1^{\mathrm{i}}$	$112.4(2)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-0.3(2)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 1$	$-0.1(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$0.2(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$	$0.3(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$-0.1(2)$		

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.
H atoms were positioned geometrically at distances of $0.93(\mathrm{CH})$, $0.97\left(\mathrm{CH}_{2}\right)$ and $0.96 \AA\left(\mathrm{CH}_{3}\right)$ from the parent C atoms; a riding model was used during the refinement process. The $U_{\text {iso }}(\mathrm{H})$ values were constrained to be 1.2 (1.5 for methyl) times $U_{\text {eq }}$ of the carrier atom.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: $S A I N T$ (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge the financial support of the Excellent Middle Age and Youthful Foundation of Hubei

Figure 1
Drawing of the title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code (A): $1-x, y, \frac{1}{2}-z$.]

Province Department of Education, People's Republic of China (grant No. 2002B00003).

References

Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Diez-Barra, E., Hoz, A., Sanchez-Migallon, A. \& Tejeda, J. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 1079-1084.
Effendy, M. F., Pettinari, C., Pettinari, R., Skelton, B. W. \& White, A. H. (2003). Inorg. Chem. 42, 112-117.

Juliá, S., Mazo, J., Avila, I. \& Elguero, J. (1984). Org. Prep. Proc. Int. 16, 299307.

Juliá, S., Sala, P., Mazo, J. D., Sancho, M., Ochoa, C., Elguero, J., Fayet, J. \& Vertut, M. (1982). J. Heterocycl. Chem. 19, 1141-1145.
Muller, M., Lork, E. \& Mews, R. (2001). Angew. Chem. Int. Ed. 40, 1247-1249. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sorrell, T. N. \& Borovik, A. S. (1987). J. Am. Chem. Soc. 109, 4255-4260.

